首页> 外文OA文献 >A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain–computer interface
【2h】

A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain–computer interface

机译:一种新的多元经验模式分解方法,用于提高基于ssVEp的脑机接口的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain–computer interface (BCI) applications. Approach: Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results: We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance: The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI.
机译:目的:准确有效地检测脑电图(EEG)中的稳态视觉诱发电位(SSVEP)对于相关的脑机接口(BCI)应用至关重要。方法:尽管规范相关分析(CCA)已广泛且成功地应用于SSVEP识别,但数据记录过程中经常发生的自发性EEG活动和伪影会降低识别性能。因此,有意义的是提取一些感兴趣的频率子带,以避免或减少无关的大脑活动和伪影的影响。本文提出了一种使用多元经验模式分解(MEMD)和CCA(MEMD-CCA)检测与SSVEP相关的频率分量的改进方法。记录了来自9名健康志愿者的EEG信号,以评估所提出的SSVEP识别方法的性能。主要结果:我们将我们的方法与CCA和时间局部多元同步指数(TMSI)进行了比较。结果表明,与标准CCA和TMSI相比,MEMD-CCA的准确度更高。在从0.5 froms到5 s的时间窗和0.55%,1.56%,7.78%的时间窗内,与CCA相比,平均改善了1.34%,3.11%,3.33%,10.45%,15.78%,18.45%,15.00%和14.22%。在0.75 s至5 s的时间内,比TMSI降低了14.67%,13.67%,7.33%和7.78%。该方法优于基于滤波器的分解(FB),经验模态分解(EMD)和基于小波分解(WT)的CCA来进行SSVEP识别。启示:结果证明了我们提出的MEMD-CCA能够改善基于SSVEP的BCI的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号